
z.--.

T on the Cra y X/MP

L

_.._.o_

Final Report

I _,'_'_ T ir. C£'_-Y X/v:;_ ?inil

Paul Hudak
Yale University

:'--:,Io0

April, 1991

Cooperative Agreement NCC 9-16

Research Activity No. AI.07

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

© ©

Research Institute for Computing and Information Systems

University of Houston - C/ear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R.T



The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.



T on the Cra y X/MP

Final Report





Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Paul Hudak, Department of Computer

Science, Yale University. Dr. Terry Feagin served as RICIS research coordinator.

Funding has been provided by Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Robert T. Savely, of the Software Technology

Branch, Information Technology Division, Information Systems Directorate,
NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.





T on the Cray X/MP

- Final Report -

Principal Investigator: Prof. Paul Hudak

Department of Computer Science

Yale University

New Haven, CT

April 1991

1 Background

This is the final report on research conducted under the NASA Johnson Space Center and

administered through the RICIS Project at the University of Houston-Clear-Lake.

The T programming language [4, 5] is a superset of Scheme [1], which is in turn a dialect

of Lisp. The proposed research was aimed at porting T to the Cray X/MP computer. The

effort involved research into unique systems engineering and software engineering problems

related not only to compiler design and implementation, but also to parallel computation,

the X/MP being a shared-memory multiprocessor.

2 Research Objectives

In 1986 the T Project at Yale completed construction of a optimizing compiler for T called

Orbit [2] which is incorporated into a flexible run-time environment called the T System. T

programs compiled using Orbit have been benchmarked against similar programs in conven-

tional languages such as C and Pascal, with comparable results. The T System is available

on most MC68000-based workstations (Sun, Apollo, HP), as well as Sun SparcStations, Dec-

Stations, and MIPS workstations. In addition, a parallel dialect called Mul-T [3] is available

on the Encore Multimax.

Given our excellent technology base on workstations, our primary goal in this research

was to investigate the feasibility of porting our technology to the Cray X/MP. Doing so would

involve the sub-tasks of retargeting the assembler, code-generator, and run-time system.



3 Approach

As an intermediate language, Orbit uses a restricted version of the larnbda calculus called

CPS (for continuation-passing style). Procedures do not return but rather take as an ar-

gument a procedure to call upon completion, passing to it any results. One of the benefits

of CPS is that control flow becomes more explicit and is more easily manipulated by the

optimizer. The interfaces between T and the CPS intermediate language, and between the

intermediate language and the code generator, are simple and well-defined. This makes it

relatively easy to adapt the compiler to changes in T and to retarget the compiler to different
machines.

Most optimizations are done via source-to-source transformations of the CPS intermedi-

ate language. The expressiveness, simplicity, and well understood semantics of CPS make

optimizations easy to implement, and with confidence that the optimized code will be cor-

rect. The optimizations already implemented include eliminating tail recursive calls, flushing

unused variables and arguments, evaluating tests for effect, substituting variables so as to

eliminate unnecessary calls, integrating procedures, etc.

Moving a compiler from one machine to another is traditionally a difficult task, given

the great differences between most machines at the architectural level. Some researchers

have made attempts to write "table-driven code-generators," but this usually results in a

compromise in efficiency, since such systems make it difficult to either take advantage of, or

avoid problems with, a particular machine's idiosyncrasies. Our approach with Orbit has

been a compromise between a fully table-driven system and a more customized approach.

The result is a reasonably effective porting methodology that is relatively straightforward,

although more difficult than table-driven approaches.

As is true of any large software system, there are also certain machine-dependent features

in the runtime system, which we capture in the T System's "runtime library." This includes

the storage manager, the file system interface, the exception handling subsystem, and the

local operating system interface. These modules will require modification for the X/MP.

4 Results

Although we eventually managed to re-target the assembler and code generator (the most

critical components of the overall plan), it was much more difficult than anticipated. There

were several reasons for this, none of which were under our control:

° Our access to a Cray X/MP was via remote access at the Pittsburgh Supercomputer

Center. Unfortunately, the network connection was slow and unreliable, making soft-

ware development quite difficult.

. The program development/debugging facilities available on the Cray X/MP were far

more primitive than what we were accustomed to on our "more sophisticated" work-

stations. This also slowed down our software development activity considerably.



3. Perhaps most important of all, our entire proposal was predicated on the availability

of Unix on the Cray X/MP (Unicos), something that at the time we were writing the

proposal was promised to be available by the time the grant was awarded. In fact

Unix was not made available until half way through the contract period, and even

then the initial releases were buggy and generally unreliable. This was a very serious

impediment to our progress.

Because of these difficulties, we were not able to complete the entire port of T to the Cray

X/MP. In particular, the run-time system was not ported, and thus T programs cannot be

run without explicit linking of the required run-time support.

Aside from the above problems, we found that the run-time performance gain we achieved

in generated code was quite disappointing. Upon a thorough (but difficult, again because of

the poor program development facilities), we discovered that as a scalar machine the Cray

X/MP was only about 5 times faster than a MC68020 microprocessor, and that was indeed

the kind of speed-ups that we achieved. In order to achieve any higher performance, we have

determined that the Cray X/MP would have to be exploited in two non-trivial ways:

1. The pipeline nature of the hardware would have to be exploited by suitable code

generation techniques that minimized jumps.

2. The vector and floating-point hardware would have to be exploited to ensure fast

numeric performance.

Unfortunately, both of these improvements represent major redesigns of our compiler and

code generator, and were outside the scope of this contract. In addition, it is not entirely

clear, without further research, whether these improvements will actually pay off, since:

o Typical Lisp programs (representing, for example, AI program development) involve

very unpredictable branching behavior, due to the dynamic nature of the applications.

This makes generating large sections of jump-free code quite difficult, thus reducing

the chances of exploiting the pipelined architecture.

2. Similarly, most Lisp applications are not intensive in numeric and vector computations,

thus reducing the chances of exploiting the vector/floating-point hardware.

Although these results are somewhat negative, they are useful discoveries, and should aid in

future development of Lisp systems on Cray X/MP or similar supercomputer architectures.

3



References

[1] Clinger, W. et al. The revised revised report on scheme, or an uncommon lisp. AI Memo

848, Massachusetts Institute of Technology, August 1985.

[2] D. Kranz, R. Kelsey, J. Rees, P. Hudal_, J. Philbin, and N. Adams. Orbit: an optimizing

compiler for Scheme. In SIGPLAN '86 Symposium on Compiler Construction, pages

219-233. ACM, June 1986. Published as SIGPLAN Notices Vol. 21, No. 7, July 1986.

[3] D.A. Kranz, R.H. Halstead, and E. Mohr. MuI-T: A high-performance parallel Lisp.

In Proceedings of 1989 SIGPLAN Conference on Programming Language Design and

Implementation, pages 81-90. ACM/SIGPLAN, June 1989.

[4] J.A. Rees and N.I. Adams. T: a dialect of lisp or, lambda: the ultimate software tool.

In Proceedings I982 A CM Conference on LISP and Functional Programming, pages 114-

122. ACM, August 1982.

[5] J.A. Rees, N.I. Adams, and J.R. Meehan. The t manual. Technical Report 4th edition,

Yale University, January 1984.


